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Abstract Probabilistic forecasts are commonly used to communicate uncertainty in the occurrence of
hydrometeorological events. Although probabilistic forecasting is common, conventional methods for
assessing the reliability of these forecasts are approximate. Among the most common methods for assess-
ing reliability, the decomposed Brier Score and Reliability Diagram treat an observed string of events as
samples from multiple Binomial distributions, but this is an approximation of the forecast reliability, leading
to unnecessary loss of information. This article suggests testing the hypothesis of reliability via the Poisson-
Binomial distribution, which is a generalized solution to the Binomial distribution, providing a more accurate
model of the probabilistic event forecast verification setting. Further, a two-stage approach to reliability
assessment is suggested to identify errors in the forecast related to both bias and overly/insufficiently sharp
forecasts. Such a methodology is shown to more effectively distinguish between reliable and unreliable
forecasts, leading to more robust probabilistic forecast verification.

1. Introduction

Hydrometeorological events (e.g., precipitation occurrence, droughts, floods) are often forecasted as proba-
bilities, representing a forecaster’s certainty that a given event will occur [Murphy et al., 1980; Madadgar and
Moradkhani, 2013; Wetterhall et al., 2013; Yan and Moradkhani, 2015]. Such probabilistic forecasts are moti-
vated by the presence of uncertainties in land surface and atmospheric processes, which undermine the
ability to precisely predict future event occurrences [Slingo and Palmer, 2011; DeChant and Moradkhani,
2014]. Since forecasters do not have complete knowledge of future events, hydrologists and meteorologists
alike have recognized the benefits of communicating uncertainty in their forecasts [Hamill, 2012; Pappen-
berger et al., 2011]. This is evidenced by the wealth of operational probabilistic forecasting systems [Buizza
et al., 1999; Demargne et al., 2014; Park et al., 2008; Saha et al., 2006] and probabilistic forecasting research
initiatives [Schaake et al., 2007]. By issuing probabilistic forecasts, the end user is notified of the imperfect
nature of the forecast, and therefore should only rely on a forecasted event occurring with the designated
probability [Joslyn and Savelli, 2010; Gigerenzer et al., 2005]. Further, this communication of forecast uncer-
tainty can improve risk management when resources are in danger, assuming that the forecasts accurately
represent the uncertainty of an event occurring [Carriquiry and Osgood, 2012]. This necessitates detailed
examination of forecast quality to ensure effective management of risk.

Two characteristics indicate the quality of a probabilistic forecast: reliability and sharpness. Reliability, also
termed calibration, refers to the accuracy of the forecasted probability in conveying the true probability of
an event occurring [Christensen et al., 2015]. For example, an event that is forecasted with a probability of
50% should occur in 50% of instances. Alternatively, sharpness is the level of certainty in the forecast, where
greater sharpness indicates a reduction in uncertainty, which may be measured by the forecast variance or
entropy [Machete, 2013]. A shaper forecast will have a tendency to generate probabilities approaching zero
or one, with a perfectly sharp forecast only generating values of zero or one (deterministic forecast). With
both the reliability and sharpness components of a forecast being important, it becomes necessary to have
a multiobjective verification system for full assessment of forecast quality.

Multiobjectivity in forecast verification may be achieved through either a continuous function or rule based
comparison. Continuous functions used for assessing probabilistic event forecasts should be strictly proper
[Br€ocker, 2009; Christensen et al., 2015; Gneiting and Raftery, 2007], with typical examples being quadratic,
spherical, or logarithmic functions [Bickel, 2007]. Of these functions, quadratic is particularly common, which
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is often referred to as the Brier Score (BS) [Brier, 1950]. The BS is a smooth function that is strictly proper, pro-
viding a statistically sound method for comparing competing forecasts, but the BS has a complex relationship
between sharpness and reliability [Mason, 2004]. Alternatively, a rule-based approach may exhibit more con-
trol over the interaction between reliability and sharpness. This study takes the perspective that reliability
should be held paramount, and therefore follows the paradigm ‘‘maximizing sharpness subject to calibration,’’
as stated in Gneiting et al. [2007]. Within this paradigm, reliability of a forecast is a requisite condition for
acceptability [Mitchell and Wallis, 2011]. Although sharper forecasts are desired, it is imperative to ensure that
sharpness is not a factor when comparing an unreliable forecast to a reliable forecast. Through this framework,
it is essential that reliability assessment be accurate, motivating a detailed look at the typical methods for reli-
ability evaluation. The remainder of this manuscript will examine reliability assessment in probabilistic event
forecasting, with the intention of assuring maximum accuracy when assessing reliability.

2. Identifying a Distribution for Reliability Assessment

Assume that some forecast methodology, f, using some information, Dt, estimates the probability of an
event, pt, at time t, as is shown in equation (1).

pt5f Dtð Þ (1)

Likewise, assume that an observation, Ot, is available at each forecast time, which may be either 0 or 1, with
1 indicating event occurrence and 0 indicating event nonoccurrence. This is the typical verification setting,
where the forecasted probabilities and observed event occurrences compose all available information. With
this information, the forecaster will attempt to determine if the forecast is a reliable predictor of the event
of interest.

A probabilistic forecast is deemed reliable if the forecasted event probabilities are statistically indistinguish-
able from the true event probabilities [Annan and Hargreaves, 2010]. Note that the term ‘‘true probability’’
used here refers to the probability that properly represents the uncertainty in the forecast. Reliability assess-
ment therefore becomes an examination of the similarity between the forecasted and true probabilities.
Although the true probabilities are not directly available in the verification setting, the forecaster may
assume that the observations provide information about the true probabilities. A prudent approach is to
view the observations as random binary variables, each drawn according to the true event probability. By
viewing the observations as random variables, the observations become representative of the true event
probability. Since the forecaster must evaluate the similarity between the forecasted and true probabilities,
and the observations are assumed to be drawn with the true probability, the problem may be inverted by
quantifying the probability that the observations were drawn based on the forecasted probabilities. This
will be referred to as the probability of reliability.

Drawing a random binary variable based on a forecasted probability is modeled by the Bernoulli distribu-
tion. In order to estimate the probability of reliability, each forecast should be viewed as a Bernoulli trial,
with the probability of p pt;Otð Þ according to equation (2).

p pt;Otð Þ5
pt if Ot51

12pt if Ot50

(
(2)

Equation (2) provides a means to estimate the probability of a single observation of the event, assuming
that the forecasted probability is equal to the true probability. Although equation (2) allows the forecaster
to estimate the probability of each observation being drawn with the forecasted probability, the forecaster
will be required to estimate the probability of a set of forecasts and observations occurring simultaneously
in order to have sufficient information for robust reliability assessment. A first step is estimating the proba-
bility of the specific set of forecasted probabilities (p1:T ) and observations (O1:T ) occurring, according to
equation (3). Note that equation (3) assumes that the forecasts are serially independent.

p p1:T ;O1:Tð Þ5
YT

t51

p pt;Otð Þ (3)

While equation (3) provides the forecaster with the probability of the specific forecast and observation
sequence, this probability will become infinitesimal for a large number forecast and observation pairs. It is
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suggested here that the probability of reliability should be formulated into a probability distribution, which
may be achieved by viewing the observations as random variables. When viewing the observations as ran-
dom variables, all permutations of O1:T must be examined. Therefore, it is necessary to estimate the proba-
bility of K events occurring, where K is estimated according to equation (4).

K5
XT

t51

Ot (4)

This necessitates the summation of p p1:T ;O1:Tð Þ over each permutation of K observations in T trials, estimat-
ing the probability that K events may occur. Within this setting, the Poisson-Binomial distribution [Hodges
and Le Cam, 1960; Hong, 2013] estimates the probability of reliability exactly, and the corresponding Proba-
bility Mass Function (PMF) is shown in equation (5).

fPBðp1:T ; KÞ5
X
A2S

Y
t2A

pt

Y
t2Ac

12ptð Þ
 !

(5)

In equation (5), S is the set of all the permutations of K event occurrences in T trials that satisfy equation (4),
A represents a specific permutation drawn from S, and Ac is the complement of A (Ac5 12Að Þ). Therefore, fPB

ðp1:T ; KÞ is the probability that K events will occur if p1:T is equal to the true series of event probabilities.
More specifically, equation (5) estimates the probability that K observations would have occurred, assuming
the forecast is reliable, which is equal to the probability of reliability. At this point, it is important to note
that the Poisson-Binomial distribution will only be sensitive to bias in p1:T , and more complex types of unre-
liability will require additional considerations. This issue will be examined in sections 6.2, where numerical
experiments examine the utility of the Poisson-Binomial distribution for reliability assessment, and section
7, where a new approach is developed for reliability assessment.

3. Formal Hypothesis Testing

In this article, it is suggested that reliability assessment should take a rejectionist approach, where a fore-
caster hypothesizes that the forecast is reliable (null hypothesis), and attempts to disprove that hypothesis.
If the forecaster cannot provide sufficient evidence to prove that the true probabilities are different from
the forecasted probabilities, then the hypothesis of reliability cannot be rejected. Verification with this
methodology is regularly performed for continuous predictands, typically with the use of the chi-squared
test [Joliffe and Primo, 2008], but is rare among forecasts of dichotomous hydrometeorological events.

Such a hypothesis test may be performed with the Poisson-Binomial distribution, but requires the formula-
tion of the Cumulative Distribution Function (CDF). The CDF of the Poisson-Binomial distribution is esti-
mated according to equation (6).

FPB k � Kð Þ5
XK

k50

X
A2Sk

Y
t2A

pt

Y
t2Ac

12ptð Þ
 !" #

(6)

In order to perform this hypothesis test, a significance level (p-value) will need to be selected to reject the
null hypothesis, which will be 0.05 throughout this article. More specifically, if 0:025 � FPB k � Kð Þ � 0:975,
then the hypothesis of reliability will not be rejected, and therefore the forecast will be deemed reliable. If
multiple different forecast methods are deemed reliable, then the sharpest of the reliable forecast methods
will be selected as the ‘‘best’’ forecast, satisfying the paradigm of ‘‘maximizing sharpness subject to calibra-
tion,’’ as described in section 1. Within the Poisson-Binomial Distribution, increasing sharpness is identified
with a reduction in variance, which is estimated by equation (7).

r2
PB5

XT

t51

pt 12ptð Þ (7)

Direct estimation of equation (6) is computationally infeasible for any useful sample size due to the large
number of permutations of the observed events [Hong, 2013]. In order to overcome this issue, it is possible
to use the Discrete Fourier Transform and the Characteristic Function, as demonstrated by Hong [2013], to
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solve the Poisson-Binomial CDF at any practically relevant sample size. This provides an exact solution to
estimate the Poisson-Binomial CDF, thus allowing for precise hypothesis testing.

4. Conventional Reliability Assessment

The Poisson-Binomial distribution is absent from the hydrometeorological literature, and only approxima-
tions are present for probabilistic event forecast verification. All conventional reliability metrics are based
on the Binomial Distribution, which is a specific case of the Poisson-Binomial distribution, where all fore-
casted probabilities are equal. Use of the Binomial distribution is therefore an approximation in the proba-
bilistic verification setting, leading to a loss of statistical power, with the exception of reliance on
climatology, where the historical frequency of the event is used for forecasting. The Binomial CDF is much
simpler than the Poisson-Binomial CDF, as shown in equation (8), and has therefore been an attractive alter-
native for general use.

FBðk � KÞ5
XK

k50

T

k

 !
p1:T

k 12p1:Tð Þ T2kð Þ (8)

In equation (8), p1:T is the average of all forecast probabilities p1:T 5 1
T

PT
t51

pt

� �
and

T

k

 !
is the binomial

coefficient, estimated according to equation (9), which removes the need to sum over all permutations of
event occurrences.

T

k

 !
5

T !

k!ðT2kÞ! (9)

The Binomial CDF provides a simplified function for estimating the probability of reliability, but this will
become increasingly approximate as the variability in forecasted probabilities increases. In order to reduce
these errors, it has become common to group similarly valued forecasts, referred to as binning. Although
binning is utilized to reduce error in the Binomial Distribution, it has the added benefit of identifying com-
plex types of unreliability, and therefore may also be necessary when using the more appropriate Poisson-
Binomial Distribution. This binning approach will divide the possible range of probabilities (pt 2 0; 1½ �) into
B groups, which are typically evenly spaced. According to equation (10), each of the probabilities within the
bin limits b 1

B 2 1
B

� �
; b 1

B

� �� �� �
are selected for set b, where b is the selected bin number, which contains nb

forecasts.

pb;1:nb 5 b
1
B

2
1
B

� �
� p1:t < b

1
B

� �� 	
(10)

Along with the binned probabilities, the observations must be binned as well, which is shown in equation
(11), and the total number of observed occurrences within each bin is estimated according to equation (12),
which is the application of equation (4) to multiple bins.

Ob;1:nb 5 Ot if pt 2 pb;1:nbf (11)

Kb5
Xnb

i51

Ob;i (12)

In order to evaluate the Binomial distribution at each bin, the bin-averaged forecast probability (pb ) will be
estimated from equation (13).

pb 5
1

nb

Xnb

i51

pb;i (13)

With this bin averaged probability, the Binomial CDF may be evaluated according to equation (14).

FB;bðk � KbÞ5
XKb

k50

nb

k

 !
pb

k 12pbð Þ nb2kð Þ (14)
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By binning the forecasted probabilities, the forecast verification problem is broken up into multiple separate
problems, where the bin-averaged probability becomes increasingly representative of the set of probabilis-
tic forecasts with decreasing bin size.

Rather than directly estimating the Binomial CDF, meteorologists and hydrologist commonly use approxi-
mations. The most common verification methods are the BS and the Reliability Diagram. The original form
of the BS is presented in equation (15), estimating the mean square error (MSE) of the forecasted probabil-
ities and corresponding observations. As mentioned before, a perfect BS requires both perfect reliability
and sharpness.

BS5
1
T

XT

t51

pt2Otð Þ2 (15)

In order to assess reliability directly, the BS must be decomposed [Murphy, 1973]. Decomposition of the BS
requires binning forecasted probabilities and observations, allowing for the comparison of bin average fore-
casted probabilities (pb ) and bin observation frequencies (Ob ), as is shown in equation (16) [Stephenson
et al., 2007].

BS5
1
T

XB

b51

nb pb 2Ob
� �2

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Re liability

1
1
T

XB

b51

Xnb

i51

Ob;i2Ob
� �2

1 pb;i2pb
� �2

22 Ob;i2Ob
� �

pb;i2pb
� �h i" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Variances and Covar iance

(16)

In equation (16), Ob is the observation frequency within bin b Ob 5 Kb
nb

� �
. The first summation on the right-

hand side of equation (16) is the reliability estimate based on the BS (BSR), which is minimized with a per-
fectly reliable forecast. The second summation in equation (16) is the within bin variance of the observation
and forecast, and the within bin covariance of the observation and forecast, which is minimized with perfect
sharpness. Through equation (16), the BSR may be directly estimated as the MSE of the bin averaged fore-
cast probabilities and the bin observation frequencies. For the remainder of the article, the error in the bin

averaged forecast probabilities (pb 2Ob ), will be referred to as probabilistic residuals. As the number of bins
approaches infinity, the probabilistic residuals will approach Gaussianity, making the BSR approach perfect
estimation of the probability of reliability from the Binomial distribution with increasing sample size [Feller,
1945], with the exception that the BSR is inversely proportional to the probability from the Binomial distribu-
tion. Although the BSR will approach the exact solution to the Binomial distribution as B approaches infinite,
there will be some error due to this approximation at any practical number of bins.

The Reliability Diagram provides a means for graphical comparison of the probabilistic residuals, allowing
for visual assessment of forecast performance. In this diagram, Ob is plotted on the vertical axis and pb is
plotted on the horizontal axis, and then the corresponding points are compared to the one-to-one line. The
proximity of the Reliability Diagram to the one-to-one line indicates a high probability of reliability.
Although the Reliability Diagram is very useful for diagnosing errors in different bins, it may be misleading
as probabilistic residuals in each bin are not proportional to the Binomial distribution. In order to overcome
this problem, Br€ocker and Smith [2007] translated the Reliability Diagram into probability space using the
Binomial CDF. This provides a more accurate assessment of reliability from the Reliability Diagram.

The use of the BSR and Reliability Diagram provides simple means for assessing the reliability of probabilistic
hydrometeorological event forecasts, but these simplifications have drawbacks. First, these methods are
approximations of the Binomial distribution, except in the case described in Br€ocker and Smith [2007]. As
approximations, it is not clear the extent to which these methods damage the assessment of forecast reli-
ability. Second, both methods are based on the Binomial distribution, which is limiting. It becomes a bal-
ance between having sufficiently small forecast bin variance to reduce errors, and enough observations in
each bin to draw meaningful conclusions. A certain number of bins may be necessary to fully assess reliabil-
ity, but the required number of bins to reduce approximation errors in the Binomial distribution is poten-
tially greater than the number required for reliability assessment with the Poisson-Binomial distribution.
Further discussion on necessary bin size for different distributions is provided in sections 6 and 7. Finally,
thresholds for hypothesis testing within the BSR cannot be derived theoretically, and therefore the BSR can-
not precisely distinguish between reliable and unreliable forecasts. Although the BSR provides a useful
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method for comparing the probability of reliability, it is restricting from the rejectionist perspective. Due to
the problems highlighted above, it is necessary to examine the impacts conventional verification tools have
on reliability assessment. Such an examination was performed with numerical experiments, as described in
sections 5 and 6.

5. Numerical Experiments

Multiple synthetic probabilistic forecasting experiments were performed to examine the performance of
conventional reliability assessment in comparison to the Poisson-Binomial distribution. Within these experi-
ments, three forecast cases were implemented to examine the effects of varying degrees of forecast sharp-
ness. The first case is presented in equation (17), where the forecasts are sampled from the standard
uniform distribution. Based on case 1, a second case creates forecasts with probabilities tending toward
zero, as shown in equation (18). For the generation of the forecasts for case 2, the exponent x will be set to
a value of 2 throughout the experiments presented in section 6.1, but will range from 1 to 1.25 in the
experiments presented in section 6.2. A third case is generated according to equation (19), creating to a
‘‘U’’-shaped distribution. Case three is the sharpest of all the forecasting cases, and is therefore the best
case, assuming that all forecasts are reliable. Note that T is set to 500 throughout this study.

pt;1 � U 0; 1ð Þ (17)

pt;25px
t;1 (18)

pt;35
pt;2 if t <

T
2

12pt;2 otherwise

8<
: (19)

Histograms of these forecasts are provided in Figure 1. From Figure 1, it is clear that the case 1 makes every
probability equally likely to be forecasted, case 2 has a tendency to forecast towards 0, and case 3 tends
towards both 0 and 1.

In section 6.1, the different verification methods will be examined under reliable forecasting conditions.
This requires sampling the observations according to the forecasted probabilities, thus ensuring that the
forecasted probabilities are the true probabilities. The sampling of observations is shown in equation (20),
where pt;case is the probability of forecast t for a given case. O1:T ;case is therefore a set of observations which
the given case forecasts reliably.

Ot;case5
1 if U 0; 1ð Þ � pt;case

0 otherwise

(
(20)

Further experiments are performed to determine the ability of the verification methods to reject unreliable
forecasts. In order to perform this analysis, the exponent (x) in case 2 ranges from 1 to 1.25, and the corre-
sponding values are estimated for case 3. These new cases (case 2 and 3 with x values ranging from 1 to
1.25) are then compared to observations drawn with probabilities according to case 1 (O1:T ;1). This creates a
scenario where the forecasts become increasingly unreliable, due to both skewed probabilities and overly
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Figure 1. Histograms of the forecasted probabilities for each case, with x52 in equation (18).
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confident probabilities, with respect to the observations. Results for these increasingly unreliable forecasts
will be examined in section 6.2.

6. Results

6.1. Reliable Forecasts
A first examination of the errors related to conventional metrics requires a comparison of the Binomial and
Poisson-Binomial distribution. This is presented for each forecast case in Figure 2, where the Binomial and
Poisson-Binomial probability distributions are presented for each case, with the use of a single bin. A first
observation from this figure is that the Binomial distribution is wider than the Poisson-Binomial distribution
for every case. This increased width of the Binomial Distribution is expected, as the variance of the Binomial
distribution will always be greater than the Poisson-Binomial distribution, except in the case where all prob-
abilities are equal (climatology). This is proven in Appendix A.

Figure 2 also shows that the difference between the Binomial and Poisson-Binomial distribution increases
as forecast sharpness increases, which is supported by the presentation in Appendix A. A wider distribu-
tion suggests that simplifying the verification problem, through the use of the Binomial Distribution,
reduces one’s ability to reject the hypothesis of reliability, thus increasing the possibility of type II errors.
This error is largest in Case 3, which happens to be the sharpest case. Given that each of the three fore-
cast cases is reliable, Case 3 should be selected as it provides a reliable forecast with the most certainty.
In the event that all cases are unreliable, Case 3 is the most probable to be erroneously deemed reliable,
as it widens the Binomial CDF, increasing the likelihood of incorrectly selecting Case 3 as the best forecast
based on the Binomial CDF. Overall the single bin analysis shows that use of the Binomial distribution
reduces statistical power.

Due to the loss of information caused by simplifying the problem with the Binomial distribution, the bin-
ning approach may be used to reduce the effects of forecast variability. In order to assess the effects of bin-
ning forecasts, Figure 3 shows the width of the 95% confidence interval for each distribution as a function
of bin size, where the total width of the confidence interval, summed across all bins, is presented. This figure
demonstrates the rapid growth of the 95% confidence interval with an increasing number of bins. Since the
grouping process reduces the sample size at each bin, the 95% confidence interval is widened, causing an
aggregate effect on the overall determination of reliability. By binning similarly valued forecasts, one vastly
reduces the ability to distinguish between reliable and unreliable forecasts, further increasing the chance of
Type II errors. This loss of information due to binning is especially concerning in the case of hydrometeoro-
logical extremes (i.e., floods, droughts, heat-waves), which are, by definition, low probability events, making
it essential to efficiently use information from every observation. Overall it is important for forecasts to be
verified with as few bins as possible, increasing the effective sample size, thus maximizing one’s ability to
reject unreliable forecasts.

A further observation from Figure 3 is that forecast sharpness affects the magnitude of approximation errors
in the Binomial distribution, even with a large number of bins. It is expected that errors in the Binomial CDF,
in comparison to Poisson-Binomial CDF, will decrease with an increasing number of forecast bins, as each
bin becomes more representative of its members. This is evidenced in Case 1, where the Binomial CDF
approaches the Poisson-Binomial CDF with decreasing bin size. Alternatively, the Binomial CDF in Case 2
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Figure 2. Comparison of the probability distributions of the Poisson-Binomial (PB) and Binomial (B) distributions.

Water Resources Research 10.1002/2014WR016617

DECHANT AND MORADKHANI PROBABILISTIC HYDRO-METEOROLOGICAL EVENT FORECASTING 3873



and Case 3 has persistent error even with 10 bins. This result suggests that a large number of bins may be
necessary for errors associated with the Binomial CDF to be considered negligible.

Further analysis of the effects of varying bin size is performed with respect to the BSR in Figure 4. In this fig-
ure, the variability in reliability scores between the three cases is compared with increasing numbers of
bins, through 100 replicates of each forecast case. In this figure, it is expected that the difference between
the distributions of BSR values will decrease with increasing bin size, due to reduced approximation errors
in the Binomial distribution. Since the probabilities within each bin become more homogeneous with an
increasing number of bins, the BSR becomes more consistent across varying levels of sharpness. The results
here show that the BSR requires around six bins to remove these approximation errors. Although Figure 4
indicates the within bin variance is becoming negligible (equation (16)), note that the distribution of reliabil-
ity values is widening, indicating the loss of information with increasing number of bins. As was found in
Figure 3, the increasing number of bins reduces the statistical power of any verification metric.

6.2. Increasingly Unreliable Forecasts
A comparison of the BSR, Binomial distribution and the Poisson-Binomial distribution for identifying unreli-
able forecasts is presented in Figure 5, where the observation is drawn from case 1, but the forecast is cre-
ated with cases 2 and 3 with increasing x (equation (18)). The analysis of the Binomial and Poisson-Binomial
distributions in Figure 5 uses a single bin approach, whereas the BSR uses six bins based on the analysis of
Figure 4. In Figure 5, the fraction of 100 forecast replicates that are rejected, with a significance of 95%, is
shown with respect to x, where the threshold for the BSR was estimated from the results presented in Figure
4 (the threshold for BSR is set to 0.0043). For case 2, it is clear that the fraction of forecast replicates rejected
with the Poisson-Binomial distribution increases more rapidly than with the Binomial distribution or the BSR. This
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Figure 3. The width of the 95% confidence interval (K) of the Poisson-Binomial (PB) and the Binomial (B) CDFs, with respect to the number of bins.
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indicates that Poisson-Binomial distri-
bution has the greatest statistical
power, the Binomial distribution has a
small loss of information, and the BSR

has greater loss of information than the
Binomial distribution. This result shows
that the Poisson-Binomial distribution
is very effective in rejecting unreliable
forecasts that are improperly skewed,
and therefore biased, but the results
are much different for case 3. In this
case, the Poisson-Binomial and Bino-
mial distributions are largely unable to
reject case 3 with an x value of 1.25.
Alternatively, the BSR approaches a
rejection rate of 0.5 with and x value of
1.25. This indicates that a multibin
approach is required to reject some
unreliable forecasts. Although a single
bin verification framework minimizes
the width of the 95% significance inter-
val, this will only be useful if the forecast
is significantly biased, as in case 2. Alter-
natively, if the forecast is unbiased, yet
still unreliable, as in case 3, the errors
will go unnoticed without examining
separate bins. Further exploration of
this scenario is performed with the Reli-
ability Diagram.

The reliability diagram for the scenar-
ios explored in Figures 5 is presented
in Figure 6. In this figure, the top row
shows the median Reliability Diagram
of all 100 replicates for increasing
skew (case 2), with associated 95% sig-
nificance intervals from the Binomial
distribution, and the second row
shows the rejection rate for each bin.

Likewise, the bottom two rows show the same information for case 3. Each reliability diagram uses six bins, fol-
lowing the analysis presented in Figure 4. With respect to case 2, the median reliability diagram steadily
approaches the upper limit of the significance interval at the lower bins, with increasing x values. This translates
into increasingly frequent exceedance of the significance interval for these bins, as shown in the second row of
Figure 6. Note that this frequency increases at a similar rate to the BSR, which indicates a similar level of statisti-
cal power. With respect to case 3, the Reliability Diagram shows increasing deviations at the outer probabilities,
but remains reliable at the medial probabilities, with increasing x. These deviations at the outer probabilities
occur at a similar rate, keeping the forecast unbiased. Although it is clear that this forecast is unreliable from the
multibin perspective, single bin analysis is unable to diagnose these errors. Therefore, it is necessary to use a
multibin approach when examining the reliability of event forecasts. This motivates the development of a new
framework for testing the hypothesis of reliability.

7. Proposed Verification Framework

In order to overcome the inability of the single bin analysis to effectively reject forecasts with unbiased, yet
unreliable probabilistic residuals, a multibin verification framework must be developed. Since the multibin

Figure 5. Fraction of forecasts rejected via the reliability component of the Brier
Score (BSR), the Poisson-Binomial distribution (PB), and the Binomial distribution (B),
from 100 replicates, for varying x values (equation (18)) of case 2 and 3.
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approach was shown to reduce statistical power, a two stage approach is proposed: (1) use a single bin
analysis to maximize the ability to reject biased probabilistic forecasts, and (2) use a multibin approach to
assess unbiased, yet unreliable, probabilistic forecasts. Within this framework, a few considerations must be
made. First, the significance level (a) will become complex. Since multiple hypothesis tests will be per-
formed, the forecaster will need to adjust the significance level. For this study, the �Sid�ak correction is
selected, which is presented in equations (21) and (22).

a1512
ffiffiffiffiffiffiffiffiffi
12a
p

(21)

aB512
ffiffiffiffiffiffiffiffiffiffiffi
12a1

B
p

(22)

In the above equations, a is the significance level (set to 0.05 in this study), a1 is the significance level for
the single bin stage of the analysis, and aB is the significance level for each bin of the multibin stage of the
analysis. If any of the B11 hypothesis tests reject the null hypothesis, then the hypothesis of reliability is
rejected with a minimum significance level of 12a.

The multibin stage of the analysis will require the forecaster to determine the appropriate number of bins
for verification. A first note is that only even numbers of bins should be considered, as an odd number of
bins will have a bin centered around 0.5, which will be sensitive to bias in the forecasted probabilities, and
therefore will be unlikely to provide additional information beyond the single bin analysis. In addition, the
forecaster should consider the nature of the probabilistic forecast errors when performing the analysis,
which requires a discussion of the generation of probabilistic event forecasts.

Probabilistic event forecasts will typically be created with probabilistic forecasts of continuous variables
(e.g., precipitation, streamflow, soil moisture). This necessitates forecasting of a continuous probability den-
sity. From this density, the forecasted event probability will be the portion of the continuous forecast
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Figure 6. The top row is the median Reliability Diagram (blue line with circles) with the associated 95% significance interval from the Binomial distribution (dotted red line) for 100 repli-
cates of case 2 and varying x values (equation (18)). The second row is the fraction of rejected forecasts for each bin. The third row is the same as the top row, but for case 3, and the bot-
tom row is the same as the second row, but for case 3.
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density exceeding some predefined threshold. Given that the forecast is unbiased, yet unreliable, the most com-
mon problem will be continuous forecast densities that have improper variance, leading to an event forecast
that is overly certain or uncertain. Such a scenario can be assessed with only two bins, centered at probabilities
of 0.25 and 0.75. In the event that the underlying continuous forecast density is unbiased and has proper var-
iance, yet has improperly set higher moments (e.g., skew and kurtosis), the two-bin analysis will be unable reject
the hypothesis of reliability. Although this situation poses a potential problem for two-bin analysis, the combina-
tion of unbiased forecasts with properly set variance, in conjunction with improper higher-order moments, is
expected to be rare. Beyond this assumption of rarity, identifying unreliable forecasts with errors in higher-order
moments will require a greater number of bins to identify unreliable forecasts. With this increase in the required
number of bins, the necessary number of observations to reject the null hypothesis will grow rapidly. Due to
this increase in the required number of observations, an analysis was performed to determine the minimum
number of observations that must be available to warrant analysis with different numbers of bins.

In this analysis, the minimum number of observations necessary to reject the hypothesis of reliability for dif-
ferent numbers of bins was estimated. A function was developed that calculates the observation frequency
for each bin (�Ob), which creates the maximum possible probabilistic residuals for each bin, and therefore
requires the minimum number of observations to identify as unreliable. This function was created under
the assumption that the observed frequency is monotonically nondecreasing with increasing forecasted
probability, based on the expectation that the forecasted probabilities and observation frequencies are pos-
itively correlated, and the probabilistic residuals are unbiased. Therefore, the function must be symmetrical
about the bin edges, which will be ensured if it has passed the single bin analysis. Under these assumptions,
equation (23) estimates the observation frequencies that create the maximum probabilistic residuals, given
an even numbers of bins. Figure 7 shows the function for bin sizes of 2, 4, and 6, for illustrative purposes.
Following this equation, the maximum probabilistic residual is given by equation (24).

�Ob5
2b21

2B
(23)

max �pb2�Ob½ �5 b
B

2
2b21

2B
5

1
2B

(24)

With the maximum probabilistic residuals provided by equation (24), the required number of observations
in each bin, Nb, to reject the hypothesis of reliability may be estimated with the inverse Binomial distribu-
tion. In order to determine the required number of observations to reject the probabilistic residuals given
by equation (23), one may solve equation (25).

1
2B

5�pb2�Ob �
F21

B 0:5;Nb; 0:52 1
2B

� �
Nb

2
F21

B
aB
2 ;Nb; 0:52 1

2B

� �
Nb

(25)

In this equation, F21
B 0:5;Nb; 0:52 1

2B

� �
is the inverse of the cumulative Binomial distribution, which solves

for the number of event occurrences at the median of the distribution, over N forecasts, with a probability

of 0:52 1
2B (center of the bin located immediately below 0.5). Therefore,

F21
B 0:5;Nb;0:52 1

2Bð Þ
Nb

approximates �pb, and
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Figure 7. Comparison of the forecasted probabilities and associated observation frequencies for the step-wise function (equation (23)), which is a representation of the worst forecast
that is unbiased with observation frequencies that are monotonically nondecreasing with increasing forecast probability.
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F21
B

aB
2 ;Nb ;0:52 1

2Bð Þ
Nb

is equal to the threshold for
�Ob, based on the lower bound of the confi-
dence interval (aB

2 ) defined in equation (22).

This equation was solved numerically for
Nb, starting at Nb51 and increasing N by
increments of one until the equation is sat-
isfied. For B52, Nb would need to be
greater than 12, for B54, Nb would need to
be greater than 97, and for B56, Nb would
need to be greater than 265. Assuming
that the observations are evenly distrib-
uted in all bins, the minimum number of
observations, summed across all bins,
required to reject the hypothesis of reliabil-
ity would be 24, 388 and 1590, for B52,
B54, and B56, respectively. Due to the rar-
ity of scenarios in which more than two
bins is warranted, and the rapid growth in
minimum required number of observations
to reject the hypothesis of reliability, this
study proposes that two bins are prudent
for the majority of cases.

8. Results With Proposed
Verification Framework

The proposed verification framework is
compared to the BSR (with six bins), the
Poisson-Binomial distribution and the
Binomial distribution in Figure 8. This Fig-
ure presents similar results to Figure 5, to
ensure consistency in the analysis. From
Figure 8, it is clear that the proposed meth-
odology (green line) is comparable to the
single bin analysis of the Poisson-Binomial
distribution (blue line) for case 2 (solid
lines), indicating minimal loss of informa-
tion when adding a second verification
stage. There is a minor loss of information,
and this is due to the requirement of
decreasing the significance level in the sin-
gle bin case. The proposed technique still
outperforms both the BSR and Binomial
distribution, indicating that this is an effec-
tive means to reject biased probabilistic
residuals.

With respect to case 3, the proposed
method shows the ability to reject the
unreliable forecasts. As is expected, the
rejection rate increases as the forecasts

become increasingly unreliable. Further, the rate at which the unreliable forecasts are rejected with the pro-
posed method increases at a faster rate than the BSR, which indicates that this method provides more statis-
tical power than the BSR. As the BSR and Reliability Diagram were found to reject unreliable forecasts at a

Figure 8. Percentage of rejected forecasts as a function of x (equation (18)).
PB is the single bin Poisson-Binomial distribution, B is the single bin Binomial
distribution, TS is the proposed two-stage verification framework, and BSR is
the reliability component of the decomposed Brier Score.
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similar rate, it can be concluded that the
proposed methodology is more effective
than the Reliability Diagram in rejecting
unreliable forecasts as well. One caveat is
that visualization with a Reliability Dia-
gram is useful in diagnosing the form of
forecast errors (i.e., overly sharp or insuffi-
ciently sharp forecasts), and therefore this
methodology will never entirely replace
the Reliability Diagram for examining the
cause of forecast errors.

9. Case Study: Probability of
Precipitation Forecasts

In order to assess the utility of the pro-
posed verification framework on real fore-

casts, a case study with National Weather Service (NWS) 12 h probability of precipitation forecasts was
performed. Probability of precipitation is regularly forecasted by the National Weather Service throughout
the United States. This data are archived in the National Digital Forecast Database (NDFD), which may be
accessed through the National Operational Model Archive & Distribution System (NOMADS) (http://nomads.
ncdc.noaa.gov/data.php#ndfd). For this experiment, forecasts from 1 January 2009 through 31 December
2009 were gathered. For verification, all hourly precipitation gages available through the National Climate
Data Center (NCDC), that are located the state of Oregon, USA, were gathered from the NCDC ftp site (ftp://
ftp.ncdc.noaa.gov/pub/data/hourly_precip-3240/35/). Within Oregon, there are 108 gages with hourly pre-
cipitation observations during the year 2009. At each location, the forecasts were separated between day-
time (5 A.M. to 5 P.M.) and nighttime (5 P.M. to 5 A.M), creating two individual sets of forecasts for each
location (216 total sets of forecast and observation pairs). This separation was performed to remove any
potential inconsistencies between the day and night forecasts/observations. Forecasts at each of the 108
locations, throughout the study period, are shown in a histogram in Figure 9. From this figure, it is clear that

Figure 9. Histogram of the National Weather Service 12 h probability of pre-
cipitation forecasts.
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the forecasts assign zero, or near zero,
probabilities at a higher rate than any
other value. This is reflective of the
nature of precipitation throughout Ore-
gon, where the majority of 12 h peri-
ods in a given year will not experience
precipitation. These forecasts also have
an increased frequency at lower proba-
bilities than high probabilities, with the
exception of forecasts equal to 100%.

The NWS probability of precipitation
forecasts have been well studied [Bickel
et al., 2011], and were found to be
unreliable, as a whole, throughout the
US. Since the forecasts are known to be
unreliable, the aim in this section is to
compare the ability of the proposed
two-stage verification method, the Reli-
ability Diagram, and the BSR in reject-
ing the forecasts. In order to compare
the statistical power of these techni-
ques, the number of observations
required (ranging from 10 to 365) to
reject the hypothesis of reliability, for
both the proposed two-stage approach
and the Reliability Diagram, is com-
pared in Figure 10. In this figure, the
horizontal axis shows the number of
observations required by the Reliability
Diagram to reject the hypothesis of
reliability, with 95% significance, with
the vertical axis showing this informa-
tion for the proposed approach, and
the black line is the one-to-one line.
Note that all but five points lie below

the one-to-one line, indicating that for 211 locations, the Reliability Diagram requires more verifying obser-
vations than the proposed two-stage approach, to determine that the forecast is unreliable. This indicates
that the proposed approach has more statistical power than the Reliability Diagram, allowing for rejection
of unreliable forecasts with fewer forecast and observation pairs. Further, this suggests that the assumption
of two bins being sufficient in the multibin stage of the proposed approach is valid for this application.

In order to compare the BSR and the proposed two-stage approach, Figure 11 shows the histogram of BSR values
for reliable forecasts (Figure 11, top plot) and for unreliable forecasts (Figure 11, bottom plot). The reliable fore-
casts in Figure 11 are sampled from each of the 216 forecast sets for which the proposed two-stage approach is
unable reject the hypothesis of reliability. For unreliable forecasts, all forecasts for which the proposed two-stage
approach was capable of rejecting the hypothesis of reliability were examined. From the two histograms in Fig-
ure 11, it is observed that unreliable forecasts have a higher occurrence of large BSR values, which is expected.
Although the unreliable forecasts tend to display larger BSR values than those of the reliable forecasts, many of
the unreliable forecasts have very low BSR values, indicating that the BSR may not always be capable of distin-
guishing between reliable and unreliable forecasts. Due to the knowledge that the BSR is an approximation of
the six bin approach used in the Reliability Diagram, it is expected that the BSR will be less powerful than the Reli-
ability Diagram, and therefore less powerful than the proposed two-stage approach. Overall this real forecast ver-
ification experiment suggests that the proposed two-stage approach is the strictest criteria for determining
forecast reliability, supporting the findings from the numerical experiments presented in section 8.

Figure 11. Histograms of the BSR values corresponding to the reliable (Top) and
unreliable (Bottom) forecast lengths, as determined by the proposed two-stage
method.
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10. Conclusions

Probabilistic forecasting of events has become an important tool for forecasters to represent uncertainty in hydro-
meteorological applications, allowing forecasters to communicate the certainty of an event occurring. Assuming
that these forecasted probabilities are reliable, the end user of that forecast can effectively manage the risk of that
event occurring. This necessitates verification that the forecast is reliable, to ensure that event mitigation measures
are made on correct information. This has motivated the exploration of reliability assessment in this study.

From a theoretical standpoint, this article showed that the Poisson-Binomial distribution is an exact model of the
probabilistic verification setting. Although the Poisson-Binomial distribution is ideal for assessing reliability, it is
absent from the hydrometeorological forecast verification literature. Conventional verification tools are based on
the Binomial distribution, as an approximation of the Poisson-Binomial distribution. Beyond the Binomial approxi-
mation, these tools make further approximations to develop single valued scores (BSR) and diagrams (Reliability
Diagram). This creates two layers of approximations, which have the potential to create errors in reliability assess-
ment. Quantifying the errors resulting from these approximations is a central focus in this article.

The approximation of the Poisson-Binomial distribution, via the Binomial distribution, was found to be a bal-
ance between bin size and forecast variability. As forecast variability increases, the necessary number of bins
increases, but this increasing number of bins leads to a loss of information. By breaking up the verification
problem into multiple different bins, the sample size in each bin is reduced, leading to a loss of statistical
power in rejecting unreliable forecasts. Beyond the underlying Binomial approximation, the BSR was found to
further reduce the ability to reject unreliable forecasts. Being based on the binning approach, the BSR has an
upper limit of accuracy equal to the Binomial distribution, but imposes a normal approximation of the Binomial
distribution, which will further reduce the statistical power at any practical number of bins. In addition, thresh-
olds of acceptability (significance level) for the BSR have no analytical solution, and therefore require sampling
to estimate for any number of bins and sample size. Accurate estimation of BSR thresholds are possible in the
numerical experiments, but will be difficult for real forecasts. Similarly, the Reliability Diagram is an approxima-
tion of the Binomial distribution, except in the case discussed in Br€ocker and Smith [2007]. These approxima-
tions generally reduce the ability to differentiate between reliable and unreliable forecasts.

This article presented experiments that support the hypothesis that the Poisson-Binomial distribution maximizes
the forecaster’s ability to reject unreliable forecasts. The exception to this conclusion was a forecast that is unreli-
able, yet unbiased. Although the single bin Poisson-Binomial distribution maximizes the ability to reject biased
forecasts, a single bin is insufficient when the unreliable distribution is unbiased. Solving this problem requires a
multibin approach, motivating the development of a new verification framework. A two-stage verification frame-
work was proposed, where a single bin analysis is used to maximize the ability to reject biased forecasts, followed
by a two-bin approach to reject unbiased, yet unreliable forecasts. Results in section 8 suggest that the proposed
framework is effective in identifying both biased and unbiased unreliable forecasts. Further, an examination of a
real probabilistic forecast, the NWS 12 h probability of precipitation forecasts, supported the finding that the
two-stage approach to reliability assessment, via the Poisson-Binomial distribution, is more powerful in determin-
ing reliability than the BSR and the Reliability Diagram. One caveat is that this method could benefit from further
testing in more real data experiments, as the singular real case study examined may not be representative of all
forecasts. Although more testing is suggested to confirm these findings, the two-stage approach, via the
Poisson-Binomial distribution, was found to be the most statistically powerful of all verification methodologies
examined, and is therefore suggested for use when assessing the reliability of probabilistic event forecasts.

Appendix A: Proof That the Variance of the Binomial Distribution Is Greater than
or Equal to the Variance of the Poisson-Binomial Distribution

The variance of the Poisson-Binomial distribution is provided in equation (7), and the variance of the Bino-
mial distribution is provided in equation (A1).

r2
B5T p1:T ð12p1:T Þ (A1)

This study suggested that the Poisson-Binomial distribution will have more statistical power than the Bino-
mial distribution, except when all forecasted probabilities are equal, and therefore the inequality in equa-
tion (A2) must be proven.
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Equation (A2) may then be expanded to equation (A3).
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By definition,
XT

t51

pt5T p1:T , and therefore equation (A3) simplifies to equation (A4).
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At this point, the left-hand side of this equation may be expanded according to equation (A5), as there will
be a set of D1:T that satisfy both pt5p1:T 1Dt and
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Equation (A6) can be found by substituting the right-hand side of equation (A5) into equation (A4) and sub-
tracting T p1:T

2 from both sides.

XT

t51

Dt
2 � 0 (A6)

Equation (A6) will only reach equality in the event that all Dt are 0, and therefore the variance of the Bino-
mial distribution will always be greater than that of the Poisson-Binomial distribution, except in the scenario
where all forecasted probabilities are equal. In addition, equation (A6) shows that the difference between
the variance of the Binomial and Poisson-Binomial distribution will grow as the forecasts increases in sharp-

ness (tendency toward forecasting either 0 or 1), and therefore the
XT

t51

Dt
2 increases.
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